An Eye-Tracking Study of Query Reformulation

Information about a user’s domain knowledge and interest can be important signals for many information retrieval tasks such as query suggestion or result ranking. State-of-the-art user models rely on coarse-grained representations of the user’s previous knowledge about a topic or domain. We study query refinement using eye-tracking in order to gain precise and detailed insight into which terms the user was exposed to in a search session and which ones they showed a particular interest in. We measure fixations on the term level, allowing for a detailed model of user attention. To allow for a wide-spread exploitation of our findings, we generalize from the restrictive eye-gaze tracking to using more accessible signals: mouse cursor traces. Based on the public API of a popular search engine, we demonstrate how query suggestion candidates can be ranked according to traces of user attention and interest, resulting in significantly better performance than achieved by an attention-oblivious industry solution. Our experiments suggest that modelling term-level user attention can be achieved with great reliability and holds significant potential for supporting a range of traditional IR tasks.

The full version of this work has been accepted for presentation at the 38th Annual ACM SIGIR Conference in Santiago, Chile.